PHIL MCFARLANE, MD, PHD, FRCP(C)
DIVISION OF NEPHROLOGY
ST. MICHAEL'S

What every nonnephrologist needs to know about chronic kidney disease

PRESENTED TO: SMH CARDIOLOGY FOR THE PRACTITIONER DAY 2025

Dualities of Interest

Research

 Alexion, Amgen, Astra-Zeneca, Bayer, Boehringer Ingelheim, GSK, Janssen, Lilly, Novartis, Otsuka

Advisor

 Alnylam, Astra-Zeneca, Bayer, Boehringer Ingelheim, GSK, Janssen, Medtronic, Novartis, Otsuka

Continuing Education Events

 Alexion, Astra-Zeneca, Bayer, Boehringer Ingelheim, GSK, Janssen, Medtronic, Novartis, Otsuka

Overview

- 1) Who Has Kidney Disease?
- 2) The Cardiorenal Link
- 3) Predicting Dialysis
- 4) Saving the Heart & Kidneys

Question 1:

Where are your kidneys?

Overview

- 1) Who Has Kidney Disease?
- The Cardiorenal Link
- 3 Predicting Dialysis
- 4 Saving the Heart & Kidneys

Who has CKD?

Who has CKD?

Two Tests

Test 1:

Serum Creatinine /eGFR

Test 1:

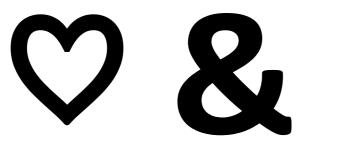
eGFR ≈ % normal renal function

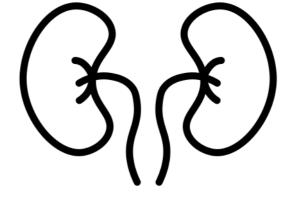
Test 2:

Random Urine uACR

Persistent

1 uACR, J eGFR Or Both = CKD


Question 2:


Do you have CKD?

Overview

- 1 Who Has Kidney Disease?
- 2) The Cardiorenal Link
 - 3 Predicting Dialysis
 - 4 Saving the Heart & Kidneys

Cardiorenal Link

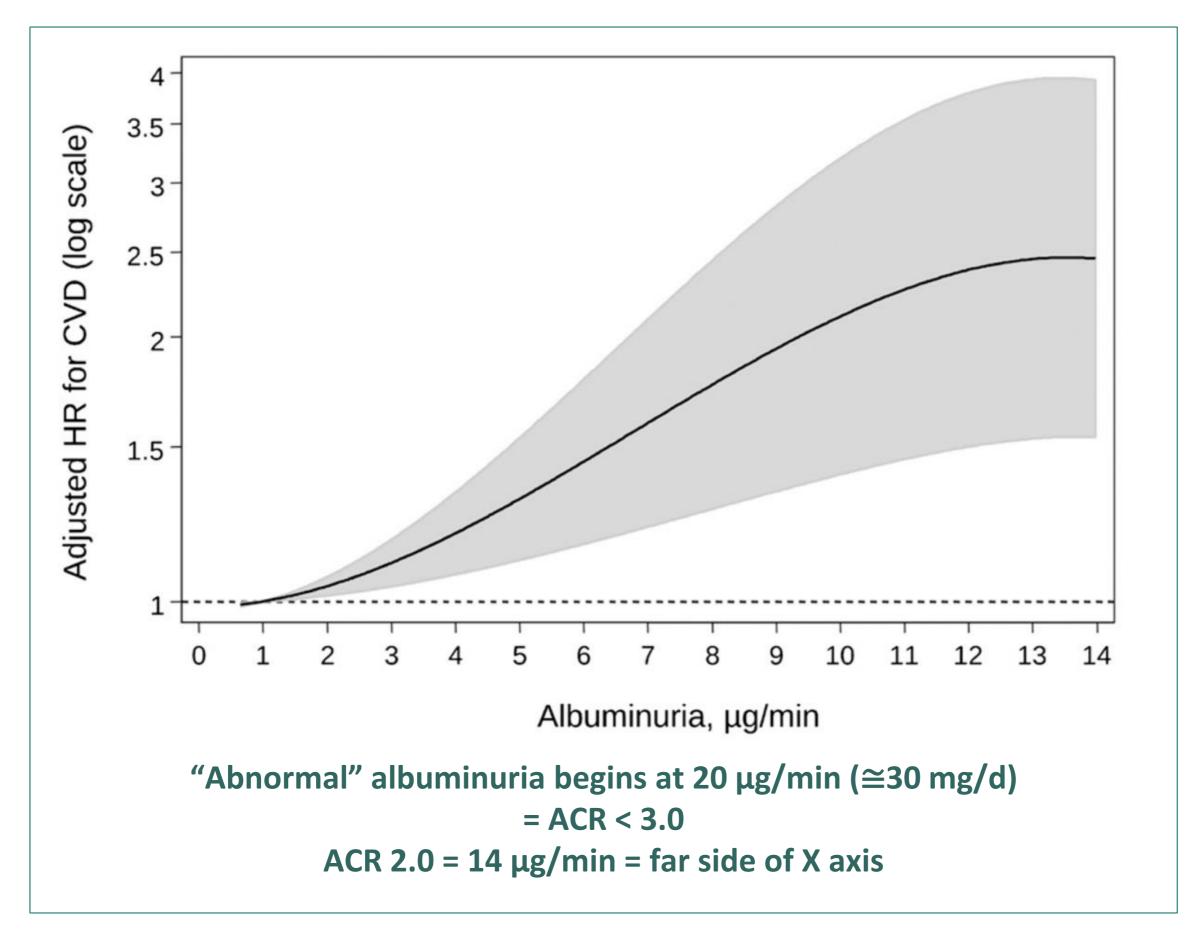
Cardiorenal Link

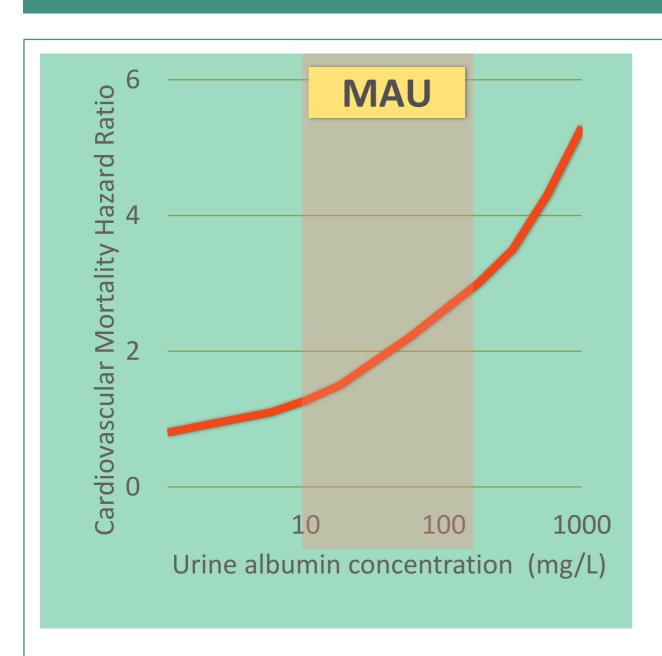
- People with CV disease are at high risk for CKD and vice versa
- Many common risk factors
- Many common causative pathways
- Many shared therapeutic strategies

eGFR

GFR Predicts CV Events

Cardiorenal Link


- The lower the eGFR, the higher the CV event rate and the shorter the survival
- Kaiser Permanente Renal Registry
 - n=1,120,295
 - All members age>20, not on dialysis or with a kidney transplant
 - Median f/u 2.8 years


UACR

uack CV

Outcomes

Proteinuria and Risk of CV Mortality

- CV risk rises in people with microalbuminuria even in the absence of diabetes or hypertension
- PREVEND
 - Population cross-section survey of a single city in the Netherlands
 - n=40,856 (n=5,241 for nonDM, nonhypertensive study)

eGFR+ uACR

CVD mortality risk by GFR and albuminuria categories

Low risk*
Moderately increased risk
High risk

Very high risk

		Albuminuria categories					
			A1		A2	A3	
			<1.13 mg/mmol	1.13-3.3 mg/mmol	3.39 to 33.8 mg/mmol	≥33.9 mg/mmol	
GFR categories: Description and range (mL/min/1.73 m²)	G1	≥105					
		90-104					
	G2	75-89					
		60-74					
	G3a	45-59					
	G3b	30-44					
	G4	15-29					
	G5	<10					

				Albuminuria categories Description and range				
				A1	A2	А3		
CKD is classified based on: • Cause (C) • GFR (G) • Albuminuria (A)				Normal to mildly increased	Moderately increased	Severely increased		
				<30 mg/g <3 mg/mmol	30–299 mg/g 3–29 mg/mmol	≥300 mg/g ≥30 mg/mmol		
GFR categories (mL/min/1.73 m²) Description and range	G1	Normal or high	≥90	Screen 1	Treat 1	Treat and refer 3		
	G2	Mildly decreased	60–89	Screen 1	Treat 1	Treat and refer		
	G3a	Mildly to moderately decreased	45–59	Treat 1	Treat 2	Treat and refer		
	G3b	Moderately to severely decreased	30–44	Treat 2	Treat and refer 3	Treat and refer		
	G4	Severely decreased	15–29	Treat and refer*	Treat and refer*	Treat and refer 4+		
	G5	Kidney failure	<15	Treat and refer 4+	Treat and refer 4+	Treat and refer 4+		
Low risk (if no other markers of kidney disease, no CKD) High risk Moderately increased risk Very high risk								

Takeaways

- Order both creatinine and urine ACR routinely
- Gives you current renal status and vector
- Gives you another estimate of CV risk

Overview

- 1 Who Has Kidney Disease?
- The Cardiorenal Link
- 3) Predicting Dialysis
 - 4 Saving the Heart & Kidneys

Prediction Equation

KFRE (Kidney Failure Risk Equation)

Question 3: Have you ordered or calculated the KFRE?

Prediction Equation

2- and 5-year risk of ESRD

ESRD Risk Prediction

- Calculated at the lab and printed on lab result form automatically
- Needs both eGFR and uACR!
- 5 year ESRD risks 3-5% refer to nephrology
- 2 year ESRD risk > 10% multidisciplinary kidney clinic
- 2 year ESRD risk > 40% set plan for dialysis/transplant/conservative care

Do you need to order KFRE = No

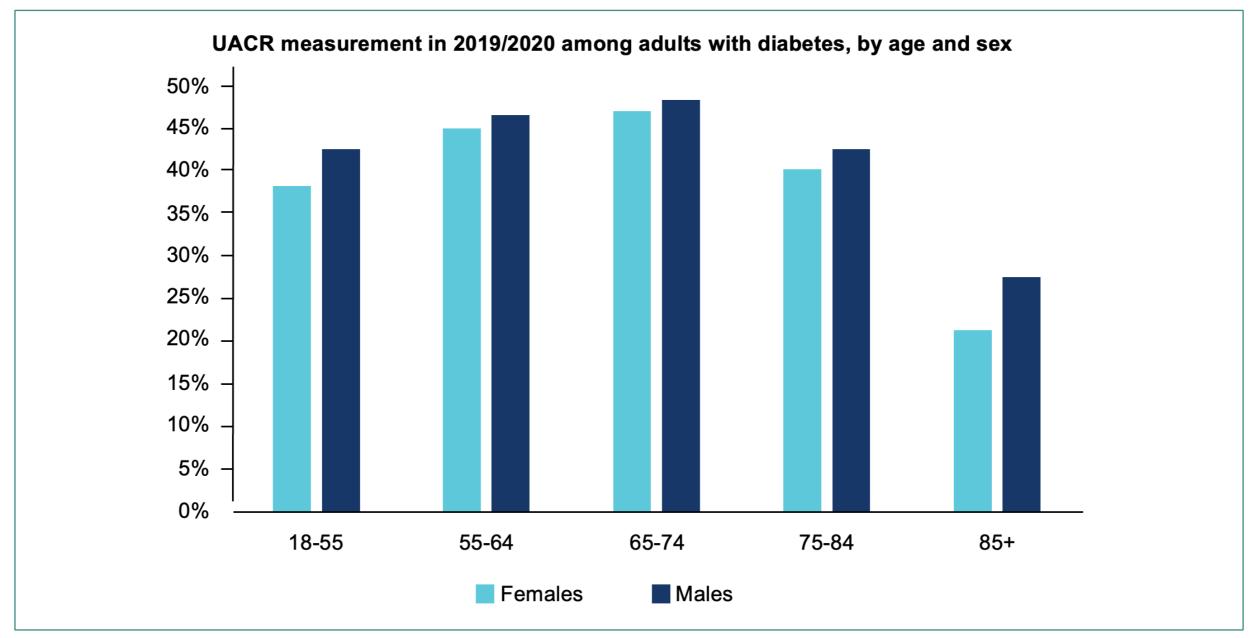
But you will get KFRE
 reports

If 5 yr risk > 5% ensure
 nephrology referral

So ... Need both eGFR and uACR

- Identify and stage CKD
- Cardiorenal risk assessment
- Risk of dialysis (KFRE)

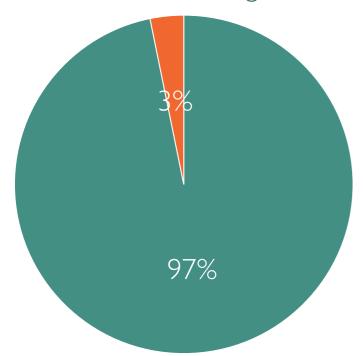
UACR is an independent risk factor for progression of CKD and is just as important as eGFR. Both are needed to see the full picture of a patient's kidney health


CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; NIDDM, non-insulin-dependent diabetes mellitus; UACR, urinary albumin to creatinine ratio.

Mattock MB, Keen H, Barnes DJ, et al. Microalbuminuria: a risk factor for coronary heart disease in non-insulin dependent diabetic men. In:. Cardiovascular Disease Prevention IILTeddington, UK: Hampton Medical Conferences, 1997: 30 (abstr). As cited in: Eastman RC, Keen H. *Lancet* 1997;350(suppl I):29-32.

But

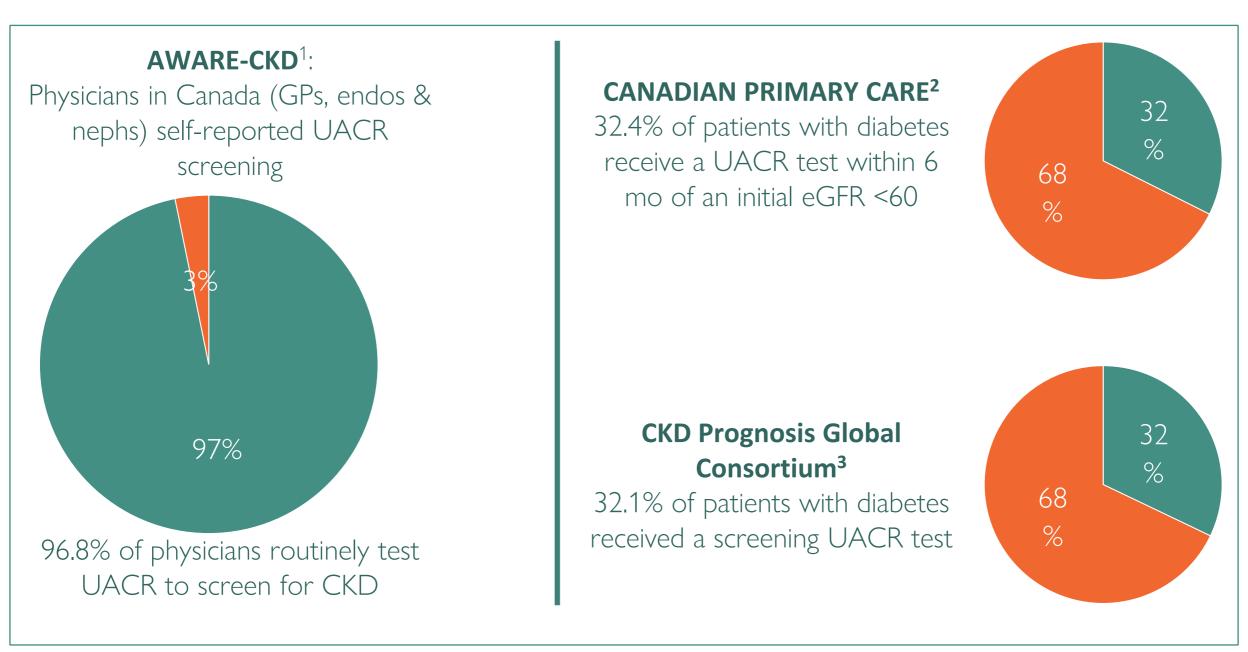
Rate of uACR Testing in Diabetes in Alberta


Alberta Health Services. Report: Kidney Care in Alberta. Prevalence and Quality of Care in Chronic Kidney Disease. 2023

Question 4: Honestly – do you routinely order uACRs?

How are physicians doing screening for UACR?

AWARE-CKD¹:


Physicians in Canada (GPs, endos & nephs) self-reported UACR screening

96.8% of physicians routinely test UACR to screen for CKD

1.Chu L, Bhogal SK, Lin P, et al. AWARE-CKD in T2D. Can J of Diabetes 2022;46:464-472., 2.Bello AK, Ronksley PE, Tangri N, et al. JAMA Netw Open. 2019 Sep 4;2(9):e1910704.,3.Shin, JI et al. Hypertension 2021;78:142-1052.

How are physicians doing screening for UACR?

1.Chu L, Bhogal SK, Lin P, et al. AWARE-CKD in T2D. Can J of Diabetes 2022;46:464-472., 2.Bello AK, Ronksley PE, Tangri N, et al. JAMA Netw Open. 2019 Sep 4;2(9):e1910704.,3.Shin, JI et al. Hypertension 2021;78:142-1052.

l'm convinced!

How often?

Screen annually in people with diabetes and no history of kidney disease.

- For type 1 diabetes, begin 5 years after onset or if at an early age, start after puberty.
- For type 2 diabetes, start at diagnosis and annually thereafter.
- Screen with random urine ACR and serum creatinine to calculate eGFR and KFRE.

If urine ACR is positive but < 20 mg/mmol, repeat for 2 of 3 positive over at least 3 months. If urine ACR \geq 20 mg/mmol, diagnose diabetic nephropathy

CKD = eGFR \leq 60 ml/min/m² ±ACR \geq 2.0 mg/mmol Diabetic nephropathy = ACR \geq 2.0 mg/mmol ± eGFR \leq 60 ml/min/m²

ACR Testing Intervals for Screening Purposes

Annually
ecified but should by annually
ecified but should be any time e drawn for screening for CV k factors/DM/etc
0

Overview

- 1 Who Has Kidney Disease?
- The Cardiorenal Link
- 3 Predicting Dialysis
- 4) Saving the Heart & Kidneys

Saving The Heart and Kidneys

Ex. Diabetes

Glucose Control A1c<7.0%. A1c<6.5%?

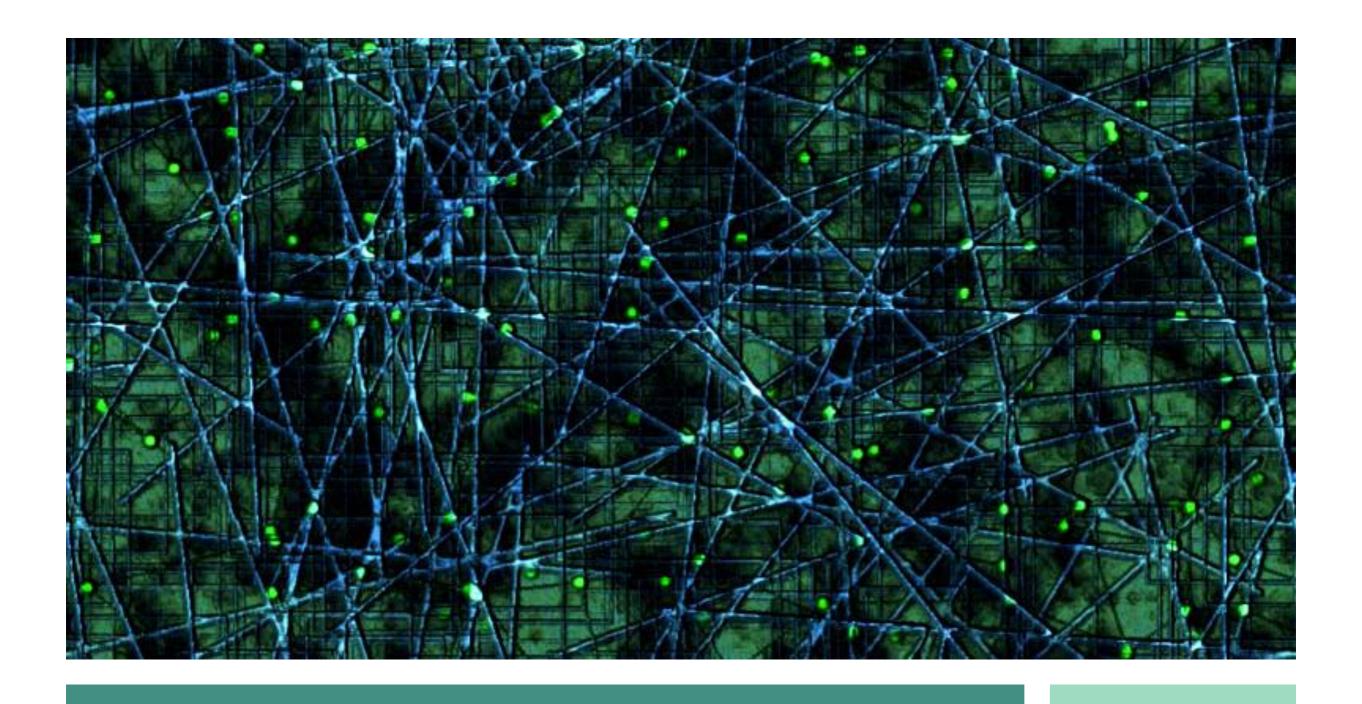
BP Control <130/80. <120?

ACEi or ARB

Glucose Control A1c<7.0%. A1c<6.5%? **BP Control** 2003 <130/80. <120? **ACEi or ARB** SGLT2i 2018 2021 nsMRA 2024 **GLP1ra**

Real World?

Dialysis growth in GTA 1996


About 15%/yr

Prevalence and Growth of Dialysis in Ontario

Prevalence and Growth of Dialysis in Ontario

Summary

Summary

- eGFR and uACR are old tests but remain very valuable in detecting CKD and determining cardiorenal risk
 - uACR not done enough
- We now have risk equations that can predict end-stage renal disease and ensure people are receiving the appropriate care at the appropriate time
- We now have many strategies that can reduce the risk of dialysis, CV events and death in people with CKD
 - Need to know that they have CKD though!

Discussion

Philip.McFarlane@unityhealth.to